metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Octaakis(4-aminopyridine)- $1\kappa^4 N^1$, $2\kappa^4 N^1$ aqua- $2\kappa O$ - μ -carbonato- $1:2\kappa^3 O$,O':O''dinickel(II) dichloride pentahydrate

Hoong-Kun Fun,^a* A Sinthiya,^b Samuel Robinson Jebas,^a‡ B. Ravindran Durai Nayagam^c and S. Alfred Cecil Raj^d

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Electronics, St Josephs College, Tiruchirappalli 620 002, India, ^cDepartment of Chemistry, Popes College, Sawyerpuram 628251, Tamil Nadu, India, and ^dDepartment of Physics, St Josephs College, Tiruchirappalli 620 002, India

Correspondence e-mail: hkfun@usm.my

Received 13 October 2008; accepted 14 October 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.065; wR factor = 0.180; data-to-parameter ratio = 21.1.

In the title compound, $[Ni_2(CO_3)(C_5H_6N_2)_8(H_2O)]Cl_2 \cdot 5H_2O$, one of the the Ni^{II} ions is six-coordinated in a distorted octahedral geometry, with the equatorial plane defined by four pyridine N atoms from four aminopyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other Ni^{II} ion is also six-coordinated, by four other pyridine N atoms from four other aminopyridine ligands and two carbonate O atoms to complete a distorted octahedral geometry. In the crystal structure, molecules are linked into an infinite three-dimensional network by O-H···O, N-H···Cl, N-H···O, O-H···N, C-H···O, C-H···N and C/N-H··· π interactions involving the pyridine rings.

Related literature

For related literature on 4-aminopyridine, see: Judge & Bever (2006); Schwid *et al.* (1997); Strupp *et al.* (2004). For bondlength data, see: Allen *et al.* (1987); Jebas *et al.* (2007).

Experimental

Crystal data

[Ni₂(CO₃)(C₅H₆N₂)₈- $\beta = 68.748 \ (1)^{\circ}$ (H₂O)]Cl₂·5H₂O $\gamma = 75.191 (1)^{\circ}$ V = 2583.59 (9) Å³ $M_r = 1109.37$ Triclinic, P1 Z = 2a = 12.8877 (3) Å Mo $K\alpha$ radiation b = 14.7920 (3) Å $\mu = 0.90 \text{ mm}^{-1}$ c = 15.0510 (3) Å T = 100.0 (1) K $\alpha = 82.797 (1)^{\circ}$ $0.73 \times 0.25 \times 0.21 \text{ mm}$

Data collection

```
Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
T_{min} = 0.560, T_{max} = 0.834
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.180$ S = 1.0413659 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W - H2W1 \cdots O2W^{i}$	0.85	2.04	2.807 (4)	150
N2-H2B···Cl1 ⁱⁱ	0.86	2.44	3.283 (4)	166
$O2W - H2W2 \cdots O1W^{i}$	0.85	2.35	2.807 (4)	114
N4-H4A···Cl2 ⁱⁱⁱ	0.86	2.61	3.405 (4)	153
$N6-H6A\cdots Cl1^{i}$	0.86	2.45	3.303 (4)	170
$N8-H8B\cdotsO1^{iv}$	0.86	2.41	3.218 (4)	157
$N8-H8B\cdots O2^{iv}$	0.86	2.36	3.118 (4)	147
$O5WA - H2W5 \cdots Cl2^{i}$	0.85	2.50	3.314 (6)	161
$N10-H10A\cdots O2^{v}$	0.86	2.10	2.880 (4)	151
$N10-H10B\cdots Cl1^{ii}$	0.86	2.48	3.308 (3)	162
$O5WB - H1WA \cdots O1W^{i}$	0.85	2.14	2.843 (7)	140
$O5WB-H2WB\cdots N14^{vi}$	0.85	2.39	3.175 (8)	154
$N12-H12A\cdots Cl2^{iv}$	0.86	2.74	3.401 (4)	135
N14 $-$ H14 A ···Cl1 ^{vii}	0.86	2.47	3.318 (4)	168
N16 $-H16B \cdots Cl2^{viii}$	0.86	2.54	3.364 (4)	162
$C6-H6\cdots N10^{v}$	0.93	2.49	3.352 (5)	155
C26-H26···N8 ^{iv}	0.93	2.57	3.413 (5)	151
$O1W - H1W1 \cdots O3$	0.85	1.68	2.525 (3)	171
$O2W - H1W2 \cdots Cl2$	0.85	2.53	3.155 (4)	132
$O2W - H2W2 \cdots O3W$	0.85	2.40	2.820 (8)	111
$N6-H6B\cdots O2W$	0.86	2.22	2.971 (5)	145
$O4W-H1W4\cdots Cl2$	0.85	1.76	2.591 (8)	166
$N8-H8A\cdots$ Cl1	0.86	2.50	3.350 (3)	169
$O5WA - H1W5 \cdots O1W$	0.85	2.24	2.802 (6)	124

[‡] Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

42253 measured reflections

 $R_{\rm int} = 0.046$

647 parameters

 $\Delta \rho_{\rm max} = 2.22 \text{ e} \text{ Å}^{-1}$

 $\Delta \rho_{\rm min} = -1.94 \text{ e} \text{ Å}^{-3}$

13659 independent reflections

10282 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O6WA−H2W6···O4W	0.85	2.03	2.870 (7)	170
N16-H16A···Cl1	0.86	2.45	3.301 (4)	170
$C1-H1\cdots O3$	0.93	2.43	3.020 (4)	121
C6-H6···O2	0.93	2.58	3.224 (4)	127
C15-H15···N1	0.93	2.57	3.065 (4)	114
C26-H26···O1	0.93	2.36	2.982 (5)	124
$C15-H15\cdots Cg1$	0.93	2.86	3.559 (5)	133
$C22-H22\cdots Cg1^{v}$	0.93	2.95	3.764 (5)	147
$N4-H4B\cdots Cg2^{iii}$	0.86	2.84	3.668 (5)	163
$C1 - H1 \cdots Cg3$	0.93	2.99	3.653 (5)	130
N12-H12 $B \cdot \cdot \cdot Cg3^{ix}$	0.86	2.92	3.783 (5)	177

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2653).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jebas, S. R., Balasubramanian, T. & Slawin, A. M. Z. (2007). Acta Cryst. E63, m1624–m1626.
- Judge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224-259.
- Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). *Neurology*, 48, 817–821.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625.

Acta Cryst. (2008). E64, m1436-m1437 [doi:10.1107/S1600536808033321]

Octaakis(4-aminopyridine)- $1\kappa^4 N^1$, $2\kappa^4 N^1$ -aqua- $2\kappa O$ - μ -carbonato- $1:2\kappa^3 O$,O':O''-dinickel(II) dichloride pentahydrate

H.-K. Fun, A. Sinthiya, S. R. Jebas, B. Ravindran Durai Nayagam and S. Alfred Cecil Raj

Comment

4-Aminopyridine (Fampridine) is used clinically in Lambert-Eaton myasthenic syndrome and multiple sclerosis because by blocking the potassium channels it prolongs action potentials thereby increasing transmitter release at the neuromuscular junction (Judge & Bever, 2006; Schwid *et al.*,1997; Strupp *et al.*, 2004). As a part of our investigation of the binding modes of 4-aminopyridine with the metals, we report here the crystal structure of the title compound, (I).

In the asymmetric unit of the title compound, both of the Ni^{II} ions have distorted octahedral geometry. The equatorial plane in Ni1 is formed by four N pyridine atoms from four aminopyridine ligands, the axial positions being occupied by one water oxygen atom and a carbonate oxygen atom. In Ni2, the equatorial plane is formed by four other pyridine N atoms from four other aminopyridine ligands, the axial positions being occupied by two carbonate oxygen atoms. Two chlorine and five other water molecules are also present within the asymmetric unit (Fig. 1). Two of these water molecules are disordered with the fixed occupany of 0.5:0.5. The bond lengths and angles are found to have normal values (Jebas *et al.*, 2007; Allen *et al.*, 1987).

The crystal packing is consolidated by intramolecular and intermolecular O—H···O, N—H···Cl, N—H···O, O—H···N, C—H···O and C—H···N hydrogen bonds to form an infinite three dimensional network. (C/N—H··· π) interactions involving the pyridine rings are also observed.

Experimental

A solution of 4-aminopyridine (0.376 g) in methanol (20 ml) was added to a solution of NiCl₂.6H₂O (.237 g) in methanol (20 ml) and the mixture was stirred at a temperature of 303 K for 12 h. The clear blue solution obtained was filtered and allowed to evaporate slowly. Blue crystals of the title compound were obtained after two weeks.

Refinement

All the hydrogen atoms were positioned geometrically [C—H=0.93 Å; N—H=0.86 Å and O—H=0.85 Å] and refined using a riding model, with $U_{iso}(H)=1.2-1.5U_{equ}(C,N \text{ and } O)$. The two disordered water molecules are refined with the fixed site occupancy of 0.5:0.5.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2. The crystal packing of the title compound, viewed along the c axis.

 $Octaakis (4-aminopyridine) - 1 \kappa^4 N^1, 2 \kappa^4 N^1 - aqua - 2 \kappa O - \mu - carbonato - 1: 2 \kappa^3 O, O': O'' - dinickel (II) dichloride pentahydrate$

Crystal data

[Ni ₂ (CO ₃)(C ₅ H ₆ N ₂) ₈ (H ₂ O)]Cl ₂ ·5H ₂ O	Z = 2
$M_r = 1109.37$	$F_{000} = 1160$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.426 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 12.8877 (3) Å	Cell parameters from 8874 reflections
<i>b</i> = 14.7920 (3) Å	$\theta = 2.5 - 31.9^{\circ}$
c = 15.0510 (3) Å	$\mu = 0.90 \text{ mm}^{-1}$
$\alpha = 82.797 (1)^{\circ}$	T = 100.0 (1) K
$\beta = 68.748 \ (1)^{\circ}$	Block, blue
$\gamma = 75.191 \ (1)^{\circ}$	$0.73 \times 0.25 \times 0.21 \text{ mm}$
$V = 2583.59 (9) \text{ Å}^3$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	13659 independent reflections
Radiation source: fine-focus sealed tube	10282 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.046$
T = 100.0(1) K	$\theta_{\text{max}} = 29.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -17 \rightarrow 17$

$T_{\min} = 0.560, \ T_{\max} = 0.834$	$k = -20 \rightarrow 20$
42253 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.065$	H-atom parameters constrained
$wR(F^2) = 0.180$	$w = 1/[\sigma^2(F_0^2) + (0.0775P)^2 + 7.7222P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
13659 reflections	$\Delta \rho_{max} = 2.22 \text{ e} \text{ Å}^{-3}$
647 parameters	$\Delta \rho_{\rm min} = -1.94 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.5271 (3)	0.9042 (3)	0.2051 (3)	0.0233 (7)	
H1	0.4600	0.8895	0.2080	0.028*	
C2	0.5181 (3)	0.9898 (2)	0.2360 (3)	0.0231 (7)	
H2	0.4471	1.0308	0.2586	0.028*	
C3	0.6164 (3)	1.0154 (3)	0.2336 (3)	0.0309 (9)	
C4	0.7188 (3)	0.9500 (3)	0.1959 (4)	0.0396 (11)	
H4	0.7874	0.9639	0.1902	0.048*	
C5	0.7195 (3)	0.8659 (3)	0.1673 (3)	0.0298 (8)	
Н5	0.7896	0.8238	0.1438	0.036*	
C6	0.8176 (3)	0.6901 (3)	-0.0318 (3)	0.0252 (7)	
H6	0.7548	0.7170	-0.0504	0.030*	
C7	0.9231 (3)	0.6713 (3)	-0.1012 (3)	0.0285 (8)	
H7	0.9303	0.6853	-0.1648	0.034*	
C8	1.0202 (3)	0.6312 (3)	-0.0768 (3)	0.0249 (7)	
С9	1.0021 (3)	0.6128 (3)	0.0207 (3)	0.0240 (7)	

H9	1.0635	0.5865	0.0413	0.029*
C10	0.8929 (3)	0.6341 (2)	0.0853 (3)	0.0213 (7)
H10	0.8833	0.6213	0.1496	0.026*
C11	0.7216 (3)	0.5782 (2)	0.2989 (2)	0.0210 (7)
H11	0.7480	0.5353	0.2510	0.025*
C12	0.7460 (3)	0.5495 (3)	0.3803 (3)	0.0237 (7)
H12	0.7865	0.4887	0.3869	0.028*
C13	0.7097 (3)	0.6124 (3)	0.4542 (3)	0.0248 (7)
C14	0.6474 (4)	0.7018 (3)	0.4381 (3)	0.0272 (8)
H14	0.6208	0.7464	0.4844	0.033*
C15	0.6256 (3)	0.7235 (3)	0.3543 (3)	0.0236 (7)
H15	0.5830	0.7830	0.3463	0.028*
C16	0.5630 (3)	0.5103 (2)	0.2170 (2)	0.0206 (7)
H16	0.5448	0.5317	0.2776	0.025*
C17	0.5325 (3)	0.4300 (3)	0.2104 (2)	0.0215 (7)
H17	0.4979	0.3970	0.2654	0.026*
C18	0.5538 (3)	0.3976 (2)	0.1201 (2)	0.0193 (6)
C19	0.6132 (3)	0.4486 (3)	0.0408 (2)	0.0219 (7)
H19	0.6325	0.4291	-0.0207	0.026*
C20	0.6421 (3)	0.5268 (2)	0.0552 (2)	0.0208 (7)
H20	0.6816	0.5590	0.0017	0.025*
C21	0.2826 (3)	0.9510 (3)	0.0819(2)	0.0215 (7)
H21	0.2953	0.9136	0.0320	0.026*
C22	0 3296 (3)	1 0281 (2)	0.0609(2)	0.0218(7)
H22	0.3710	1.0426	-0.0018	0.026*
C23	0.3147 (3)	1.0847(2)	0 1346 (3)	0.0205(7)
C24	0.2439(3)	1.0618(2)	0.2266 (3)	0.0224(7)
H24	0.2269	1 0993	0.2200 (3)	0.022*(7)
C25	0.220)	0.9832 (2)	0.2403 (3)	0.027 0.0212(7)
625 H25	0.1546	0.9692 (2)	0.3017	0.0212 (7)
C26	0.1996 (3)	0.7820 (3)	-0.0090(3)	0.025
H26	0.1776	0.7820 (5)	-0.0131	0.0233(7) 0.031*
C27	0.2720 0.1732 (4)	0.7430 0.7073 (3)	-0.0011(3)	0.0306 (8)
U27	0.1732 (4)	0.7973 (3)	-0.0911(3) -0.1492	0.0300 (8)
C28	0.2278	0.7743	-0.1403	0.037° 0.0252(7)
C28	0.0040(3)	0.8472(3)	-0.0888(3)	0.0233(7)
U29	-0.0111 (3)	0.8793 (3)	0.0001 (3)	0.0260 (8)
H29	-0.0845	0.9140	0.0062	0.034*
C30	0.0226 (3)	0.8603 (3)	0.0787 (3)	0.0278 (8)
H30	-0.0307	0.881/	0.1371	0.033*
	-0.0446 (3)	0.9253 (3)	0.3014 (3)	0.0237(7)
H31	-0.0175	0.9659	0.2506	0.028*
C32	-0.1482 (3)	0.9588 (3)	0.3702 (3)	0.0281 (8)
H32	-0.1890	1.0198	0.3651	0.034*
C33	-0.1919 (3)	0.8998 (3)	0.4486 (3)	0.0269 (8)
C34	-0.1233 (3)	0.8102 (3)	0.4509 (3)	0.0280 (8)
H34	-0.1471	0.7684	0.5015	0.034*
C35	-0.0205 (3)	0.7837 (3)	0.3785 (3)	0.0231 (7)
H35	0.0237	0.7239	0.3827	0.028*
C36	0.0675 (3)	0.6296 (3)	0.2273 (3)	0.0229 (7)

H36	0.0080	0.6764	0.2184	0.028*
C37	0.0479 (3)	0.5409 (3)	0.2534 (3)	0.0256 (8)
H37	-0.0224	0.5291	0.2612	0.031*
C38	0.1362 (3)	0.4684 (2)	0.2680 (2)	0.0216 (7)
C39	0.2416 (3)	0.4919 (2)	0.2481 (2)	0.0210 (7)
H39	0.3046	0.4457	0.2513	0.025*
C40	0.2520 (3)	0.5823 (2)	0.2239 (2)	0.0198 (6)
H40	0.3221	0.5960	0.2138	0.024*
C41	0.4459 (3)	0.7377 (2)	0.1216 (2)	0.0170 (6)
N1	0.6252 (2)	0.8396 (2)	0.1708 (2)	0.0184 (6)
N2	0.6106 (3)	1.0977 (3)	0.2669 (4)	0.0489 (11)
H2A	0.6719	1.1119	0.2653	0.059*
H2B	0.5455	1.1361	0.2896	0.059*
N3	0.7989 (2)	0.6720 (2)	0.0625 (2)	0.0191 (6)
N4	1.1259 (3)	0.6082 (3)	-0.1450 (2)	0.0350 (8)
H4A	1.1338	0.6183	-0.2043	0.042*
H4B	1.1847	0.5835	-0.1286	0.042*
N5	0.6625 (3)	0.6635 (2)	0.2825 (2)	0.0199 (6)
N6	0.7329 (4)	0.5873 (3)	0.5356 (2)	0.0377 (9)
H6A	0.7092	0.6268	0.5800	0.045*
H6B	0.7713	0.5319	0.5431	0.045*
N7	0.6177 (2)	0.5606 (2)	0.1413 (2)	0.0190 (6)
N8	0.5179 (3)	0.3224 (2)	0.1102 (2)	0.0236 (6)
H8A	0.4811	0.2931	0.1599	0.028*
H8B	0.5320	0.3039	0.0542	0.028*
N9	0.2186 (2)	0.9262 (2)	0.1713 (2)	0.0196 (6)
N10	0.3662 (3)	1.1568 (2)	0.1190 (2)	0.0251 (6)
H10A	0.4098	1.1691	0.0625	0.030*
H10B	0.3555	1.1903	0.1656	0.030*
N11	0.1267 (2)	0.8131 (2)	0.0769 (2)	0.0195 (6)
N12	0.0350 (3)	0.8655 (3)	-0.1682 (3)	0.0366 (8)
H12A	-0.0321	0.8979	-0.1645	0.044*
H12B	0.0833	0.8448	-0.2222	0.044*
N13	0.0203 (2)	0.8390 (2)	0.3017 (2)	0.0197 (6)
N14	-0.2945 (3)	0.9289 (3)	0.5175 (3)	0.0412 (10)
H14A	-0.3195	0.8917	0.5648	0.049*
H14B	-0.3346	0.9846	0.5139	0.049*
N15	0.1660 (2)	0.6529 (2)	0.2140 (2)	0.0193 (6)
N16	0.1213 (3)	0.3815 (2)	0.2988 (3)	0.0299 (7)
H16A	0.1770	0.3388	0.3067	0.036*
H16B	0.0560	0.3687	0.3106	0.036*
Ni1	0.62871 (4)	0.69875 (3)	0.15544 (3)	0.01710 (11)
Ni2	0.18322 (4)	0.79166 (3)	0.19613 (3)	0.01683 (11)
Cl1	0.35627 (8)	0.23887 (6)	0.31722 (6)	0.02547 (19)
Cl2	0.90118 (15)	0.27828 (13)	0.34939 (11)	0.0716 (5)
01	0.3536 (2)	0.74562 (17)	0.10538 (17)	0.0188 (5)
O1W	0.2427 (2)	0.76585 (17)	0.31497 (17)	0.0207 (5)
H1W1	0.3100	0.7507	0.2748	0.031*
H2W1	0.2249	0.7160	0.3444	0.031*

02	0.5421 (2)	0.73727 (17)	0.05345 (16)	0.0181 (5)	
O3	0.4495 (2)	0.72752 (17)	0.20747 (17)	0.0191 (5)	
O2W	0.7793 (4)	0.3796 (2)	0.5453 (2)	0.0571 (11)	
H1W2	0.8431	0.3488	0.5096	0.086*	
H2W2	0.7326	0.3440	0.5630	0.086*	
O3W	0.5677 (5)	0.4100 (4)	0.5178 (5)	0.111 (2)	
H1W3	0.5155	0.3898	0.5629	0.167*	
H2W3	0.5534	0.4106	0.4666	0.167*	
O4W	0.7123 (7)	0.2467 (3)	0.3499 (3)	0.123 (3)	
H1W4	0.7685	0.2667	0.3496	0.185*	
H2W4	0.6849	0.2803	0.3099	0.185*	
O5WA	0.1451 (6)	0.8802 (4)	0.4730 (4)	0.0363 (14)	0.50
H1W5	0.1303	0.8712	0.4246	0.054*	0.50
H2W5	0.1447	0.8301	0.5076	0.054*	0.50
O5WB	0.7622 (7)	0.1175 (5)	0.5465 (5)	0.0505 (18)	0.50
H1WA	0.7273	0.1482	0.5969	0.076*	0.50
H2WB	0.7478	0.0635	0.5579	0.076*	0.50
O6WA	0.6332 (5)	0.1318 (4)	0.5175 (4)	0.0502 (18)	0.50
H1W6	0.5629	0.1310	0.5350	0.075*	0.50
H2W6	0.6478	0.1688	0.4689	0.075*	0.50
O6WB	0.9981 (5)	0.9408 (4)	0.5318 (4)	0.0533 (18)	0.50
H1WC	1.0098	0.9362	0.5844	0.080*	0.50
H2WD	0.9477	0.9104	0.5386	0.080*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0196 (17)	0.0245 (17)	0.0278 (18)	-0.0055 (14)	-0.0111 (14)	0.0014 (14)
C2	0.0176 (16)	0.0197 (16)	0.0283 (18)	0.0018 (13)	-0.0076 (14)	-0.0015 (14)
C3	0.0219 (18)	0.0227 (18)	0.047 (2)	-0.0037 (15)	-0.0104 (17)	-0.0039 (17)
C4	0.0177 (18)	0.030 (2)	0.072 (3)	-0.0066 (16)	-0.012 (2)	-0.011 (2)
C5	0.0179 (17)	0.0234 (18)	0.045 (2)	-0.0036 (14)	-0.0072 (16)	-0.0042 (16)
C6	0.0218 (17)	0.0298 (19)	0.0230 (17)	-0.0004 (14)	-0.0094 (14)	-0.0033 (14)
C7	0.030 (2)	0.033 (2)	0.0204 (17)	-0.0034 (16)	-0.0081 (15)	-0.0031 (15)
C8	0.0250 (18)	0.0212 (17)	0.0261 (18)	-0.0020 (14)	-0.0068 (15)	-0.0050 (14)
C9	0.0190 (16)	0.0258 (18)	0.0267 (18)	-0.0005 (14)	-0.0103 (14)	-0.0017 (14)
C10	0.0211 (17)	0.0226 (17)	0.0226 (16)	-0.0058 (13)	-0.0106 (14)	0.0014 (13)
C11	0.0230 (17)	0.0210 (16)	0.0202 (16)	-0.0067 (13)	-0.0083 (14)	0.0009 (13)
C12	0.0259 (18)	0.0212 (17)	0.0254 (17)	-0.0065 (14)	-0.0111 (15)	0.0037 (14)
C13	0.032 (2)	0.0245 (18)	0.0209 (17)	-0.0072 (15)	-0.0125 (15)	0.0017 (14)
C14	0.038 (2)	0.0227 (18)	0.0235 (17)	-0.0071 (16)	-0.0121 (16)	-0.0028 (14)
C15	0.0266 (18)	0.0218 (17)	0.0217 (17)	-0.0045 (14)	-0.0086 (14)	0.0010 (13)
C16	0.0215 (16)	0.0221 (16)	0.0202 (16)	-0.0058 (13)	-0.0092 (13)	0.0000 (13)
C17	0.0204 (16)	0.0242 (17)	0.0201 (16)	-0.0074 (14)	-0.0067 (13)	0.0027 (13)
C18	0.0156 (15)	0.0193 (16)	0.0222 (16)	-0.0029 (12)	-0.0065 (13)	-0.0007 (13)
C19	0.0229 (17)	0.0245 (17)	0.0182 (16)	-0.0047 (14)	-0.0072 (13)	-0.0017 (13)
C20	0.0212 (17)	0.0215 (16)	0.0182 (15)	-0.0040 (13)	-0.0062 (13)	0.0018 (13)
C21	0.0224 (17)	0.0237 (17)	0.0195 (16)	-0.0057 (14)	-0.0092 (14)	0.0028 (13)

C22	0.0244 (17)	0.0221 (17)	0.0195 (16)	-0.0076 (14)	-0.0085 (14)	0.0044 (13)
C23	0.0164 (15)	0.0187 (16)	0.0259 (17)	-0.0036 (12)	-0.0090 (13)	0.0057 (13)
C24	0.0248 (18)	0.0203 (16)	0.0213 (16)	-0.0052 (14)	-0.0069 (14)	-0.0005 (13)
C25	0.0195 (16)	0.0213 (16)	0.0201 (16)	-0.0037 (13)	-0.0048 (13)	0.0011 (13)
C26	0.0212 (17)	0.0283 (19)	0.0229 (17)	-0.0011 (14)	-0.0065 (14)	0.0007 (14)
C27	0.031 (2)	0.033 (2)	0.0214 (18)	-0.0005 (16)	-0.0064 (16)	-0.0007 (15)
C28	0.0305 (19)	0.0231 (17)	0.0257 (18)	-0.0097 (15)	-0.0140 (15)	0.0081 (14)
C29	0.0231 (18)	0.0297 (19)	0.033 (2)	-0.0033 (15)	-0.0147 (16)	0.0037 (15)
C30	0.0171 (17)	0.036 (2)	0.0280 (19)	-0.0014 (15)	-0.0067 (15)	-0.0048 (16)
C31	0.0238 (18)	0.0218 (17)	0.0225 (17)	-0.0061 (14)	-0.0041 (14)	0.0002 (13)
C32	0.0257 (19)	0.0174 (16)	0.033 (2)	-0.0033 (14)	-0.0025 (16)	0.0018 (14)
C33	0.0248 (18)	0.0238 (18)	0.0266 (18)	-0.0055 (15)	-0.0019 (15)	-0.0024 (14)
C34	0.0242 (18)	0.0267 (19)	0.0263 (18)	-0.0057 (15)	-0.0025 (15)	0.0042 (15)
C35	0.0222 (17)	0.0223 (17)	0.0222 (17)	-0.0043 (14)	-0.0056 (14)	0.0005 (13)
C36	0.0186 (16)	0.0242 (17)	0.0295 (18)	-0.0047 (13)	-0.0135 (14)	0.0021 (14)
C37	0.0213 (17)	0.0260 (18)	0.035 (2)	-0.0089 (14)	-0.0152 (16)	0.0023 (15)
C38	0.0250 (18)	0.0220 (17)	0.0220 (16)	-0.0085 (14)	-0.0114 (14)	0.0011 (13)
C39	0.0195 (16)	0.0200 (16)	0.0227 (16)	-0.0016 (13)	-0.0086 (14)	0.0001 (13)
C40	0.0174 (16)	0.0207 (16)	0.0219 (16)	-0.0037 (13)	-0.0076 (13)	-0.0016 (13)
C41	0.0149 (15)	0.0159 (15)	0.0191 (15)	-0.0019 (12)	-0.0059 (12)	0.0011 (12)
N1	0.0179 (13)	0.0181 (13)	0.0195 (13)	-0.0040 (11)	-0.0075 (11)	0.0010 (11)
N2	0.0255 (18)	0.0280 (19)	0.097 (4)	-0.0023 (15)	-0.022 (2)	-0.023 (2)
N3	0.0148 (13)	0.0187 (14)	0.0227 (14)	-0.0027 (11)	-0.0060 (11)	-0.0003 (11)
N4	0.0270 (17)	0.042 (2)	0.0265 (17)	0.0020 (15)	-0.0035 (14)	-0.0072 (15)
N5	0.0196 (14)	0.0217 (14)	0.0200 (14)	-0.0053 (11)	-0.0087 (11)	0.0002 (11)
N6	0.067 (3)	0.0260 (17)	0.0275 (17)	-0.0062 (17)	-0.0294 (18)	0.0026 (14)
N7	0.0192 (14)	0.0194 (14)	0.0190 (13)	-0.0041 (11)	-0.0077 (11)	0.0002 (11)
N8	0.0257 (15)	0.0251 (15)	0.0216 (14)	-0.0123 (13)	-0.0045 (12)	-0.0037 (12)
N9	0.0174 (13)	0.0190 (14)	0.0210 (14)	-0.0054 (11)	-0.0052 (11)	0.0031 (11)
N10	0.0316 (17)	0.0232 (15)	0.0239 (15)	-0.0142 (13)	-0.0099 (13)	0.0046 (12)
N11	0.0181 (14)	0.0198 (14)	0.0201 (14)	-0.0039 (11)	-0.0070 (11)	0.0016 (11)
N12	0.045 (2)	0.038 (2)	0.0289 (18)	-0.0063 (17)	-0.0200 (16)	0.0085 (15)
N13	0.0161 (13)	0.0213 (14)	0.0208 (14)	-0.0052 (11)	-0.0053 (11)	0.0003 (11)
N14	0.0302 (19)	0.0288 (18)	0.039 (2)	-0.0005 (15)	0.0126 (16)	0.0033 (15)
N15	0.0206 (14)	0.0163 (13)	0.0209 (14)	-0.0040 (11)	-0.0080 (11)	0.0019 (11)
N16	0.0323 (18)	0.0213 (15)	0.044 (2)	-0.0120 (13)	-0.0215 (16)	0.0086 (14)
Ni1	0.0158 (2)	0.0189 (2)	0.0175 (2)	-0.00417 (16)	-0.00708 (16)	0.00114 (16)
Ni2	0.0153 (2)	0.0167 (2)	0.0176 (2)	-0.00361 (16)	-0.00508 (16)	0.00077 (15)
Cl1	0.0284 (4)	0.0199 (4)	0.0233 (4)	-0.0037 (3)	-0.0047 (3)	0.0000 (3)
Cl2	0.0797 (11)	0.0871 (11)	0.0457 (7)	-0.0515 (9)	0.0068 (7)	-0.0139 (7)
01	0.0166 (11)	0.0220 (12)	0.0186 (11)	-0.0053 (9)	-0.0062 (9)	-0.0016 (9)
O1W	0.0202 (12)	0.0235 (12)	0.0167 (11)	-0.0054 (10)	-0.0055 (9)	0.0028 (9)
O2	0.0148 (11)	0.0217 (12)	0.0177 (11)	-0.0044 (9)	-0.0064 (9)	0.0021 (9)
O3	0.0168 (11)	0.0235 (12)	0.0182 (11)	-0.0058 (9)	-0.0071 (9)	0.0013 (9)
O2W	0.096 (3)	0.0306 (17)	0.0274 (16)	-0.0150 (18)	-0.0023 (18)	0.0028 (13)
O3W	0.080 (4)	0.072 (3)	0.157 (6)	-0.045 (3)	-0.002 (4)	0.025 (4)
O4W	0.284 (9)	0.069 (3)	0.034 (2)	-0.087 (4)	-0.043 (4)	0.000 (2)
O5WA	0.058 (4)	0.035 (3)	0.021 (3)	-0.018 (3)	-0.013 (3)	0.000 (2)
O5WB	0.057 (5)	0.045 (4)	0.047 (4)	-0.015 (4)	-0.006 (4)	-0.024 (3)

O6WA O6WB	0.041 (4) 0.059 (5)	0.034 (3) 0.059 (5)	0.060 (5) 0.055 (4)	-0.006 (3) -0.023 (4)	-0.003 (3) -0.028 (4)	0.003 (3) -0.003 (4)
Geometric para	meters (Å, °)					
C1—N1		1 346 (5)	(<u>~32—C33</u>		1 407 (5)
C1 - C2		1.366 (5)	(732—H32		0.9300
C1—H1		0.9300	(C33—N14		1 355 (5)
C2-C3		1 400 (5)	(C_{33} C_{34}		1 398 (5)
C2—H2		0.9300	(C34—C35		1.376 (5)
C3—N2		1.348 (5)	(С34—Н34		0.9300
C3—C4		1.392 (6)	(C35—N13		1.350 (4)
C4—C5		1.365 (6)	(С35—Н35		0.9300
C4—H4		0.9300	(C36—N15		1.339 (4)
C5—N1		1.349 (5)	(C36—C37		1.380 (5)
С5—Н5		0.9300	(С36—Н36		0.9300
C6—N3		1.354 (5)	(C37—C38		1.411 (5)
С6—С7		1.367 (5)	(С37—Н37		0.9300
С6—Н6		0.9300	(C38—N16		1.347 (4)
С7—С8		1.396 (5)	(C38—C39		1.406 (5)
С7—Н7		0.9300	(C39—C40		1.370 (5)
C8—N4		1.364 (5)	(С39—Н39		0.9300
С8—С9		1.402 (5)	(C40—N15		1.353 (4)
C9—C10		1.372 (5)	(C40—H40		0.9300
С9—Н9		0.9300	(C41—O1		1.273 (4)
C10—N3		1.344 (4)	(C41—O2		1.291 (4)
C10—H10		0.9300	(C41—O3		1.298 (4)
C11—N5		1.342 (5)	(C41—Ni1		2.498 (3)
C11—C12		1.365 (5)	1	N1—Ni1		2.112 (3)
C11—H11		0.9300	1	N2—H2A		0.8600
C12—C13		1.408 (5)	1	N2—H2B		0.8600
C12—H12		0.9300	1	N3—Ni1		2.096 (3)
C13—N6		1.350 (5)	1	N4—H4A		0.8600
C13—C14		1.404 (5)	1	N4—H4B		0.8600
C14—C15		1.372 (5)	1	N5—Ni1		2.087 (3)
C14—H14		0.9300	1	N6—H6A		0.8600
C15—N5		1.354 (5)	1	N6—H6B		0.8600
C15—H15		0.9300	1	N7—Ni1		2.126 (3)
C16—N7		1.350 (4)	1	N8—H8A		0.8600
C16—C17		1.368 (5)	1	N8—H8B		0.8600
C16—H16		0.9300	1	N9—Ni2		2.113 (3)
C17—C18		1.407 (5)	1	N10—H10A		0.8600
C17—H17		0.9300	1	N10—H10B		0.8600
C18—N8		1.352 (4)	1	N11—Ni2		2.131 (3)
C18—C19		1.409 (5)	1	N12—H12A		0.8600
C19—C20		1.367 (5)	1	N12—H12B		0.8600
C19—H19		0.9300	1	N13—Ni2		2.129 (3)
C20—N7		1.347 (4)	1	N14—H14A		0.8600
C20—H20		0.9300	1	N14—H14B		0.8600

C21—N9	1.361 (4)	N15—Ni2	2.095 (3)
C21—C22	1.375 (5)	N16—H16A	0.8600
C21—H21	0.9300	N16—H16B	0.8600
C22—C23	1.401 (5)	Ni1—O3	2.097 (2)
С22—Н22	0.9300	Ni1—O2	2.150 (2)
C23—N10	1.348 (4)	Ni2—O1	2.109 (2)
C23—C24	1.411 (5)	Ni2—O1W	2.146 (2)
C24—C25	1.379 (5)	Cl2—H1W4	1.7605
C24—H24	0.9300	O1W—H1W1	0.8500
C25—N9	1.335 (5)	O1W—H2W1	0.8502
С25—Н25	0.9300	O2W—H1W2	0.8501
C26—N11	1.347 (5)	O2W—H2W2	0.8491
C26—C27	1.374 (5)	O3W—H1W3	0.8503
С26—Н26	0.9300	O3W—H2W3	0.8526
C27—C28	1.396 (6)	O4W—H1W4	0.8481
С27—Н27	0.9300	O4W—H2W4	0.8504
C28—N12	1.358 (5)	O5WA—H1W5	0.8501
C28—C29	1.395 (6)	O5WA—H2W5	0.8501
C29—C30	1.376 (5)	O5WB—H1WA	0.8468
С29—Н29	0.9300	O5WB—H2WB	0.8478
C30—N11	1.338 (5)	O6WA—H1W6	0.8500
С30—Н30	0.9300	O6WA—H2W6	0.8500
C31—N13	1.335 (5)	O6WB—H1WC	0.8498
C31—C32	1.375 (5)	O6WB—H2WD	0.8500
C31—H31	0.9300		
N1—C1—C2	125.3 (3)	N16—C38—C37	122.4 (3)
N1—C1—H1	117.4	C39—C38—C37	116.0 (3)
C2—C1—H1	117.4	C40—C39—C38	120.4 (3)
C1—C2—C3	119.7 (3)	С40—С39—Н39	119.8
С1—С2—Н2	120.2	С38—С39—Н39	119.8
С3—С2—Н2	120.2	N15—C40—C39	123.6 (3)
N2—C3—C4	123.1 (4)	N15—C40—H40	118.2
N2—C3—C2	121.4 (4)	С39—С40—Н40	118.2
C4—C3—C2	115.5 (4)	O1—C41—O2	121.9 (3)
C5—C4—C3	120.7 (4)	O1—C41—O3	122.1 (3)
C5—C4—H4	119.6	O2—C41—O3	116.0 (3)
C3—C4—H4	119.6	O1—C41—Ni1	172.2 (2)
N1—C5—C4	124.3 (4)	O2—C41—Ni1	59.39 (16)
N1—C5—H5	117.8	O3—C41—Ni1	57.03 (16)
С4—С5—Н5	117.8	C1—N1—C5	114.4 (3)
N3—C6—C7	124.0 (3)	C1—N1—Ni1	122.6 (2)
N3—C6—H6	118.0	C5—N1—Ni1	121.4 (2)
С7—С6—Н6	118.0	C3—N2—H2A	120.0
C6—C7—C8	120.2 (4)	C3—N2—H2B	120.0
С6—С7—Н7	119.9	H2A—N2—H2B	120.0
С8—С7—Н7	119.9	C10—N3—C6	115.3 (3)
N4—C8—C7	121.4 (4)	C10—N3—Ni1	127.2 (2)
N4—C8—C9	122.3 (4)	C6—N3—Ni1	117.4 (2)
C7—C8—C9	116.3 (3)	C8—N4—H4A	120.0

C10—C9—C8	119.4 (3)	C8—N4—H4B	120.0
С10—С9—Н9	120.3	H4A—N4—H4B	120.0
С8—С9—Н9	120.3	C11—N5—C15	115.3 (3)
N3—C10—C9	124.7 (3)	C11—N5—Ni1	121.6 (2)
N3—C10—H10	117.6	C15—N5—Ni1	123.1 (2)
С9—С10—Н10	117.6	C13—N6—H6A	120.0
N5-C11-C12	125.1 (3)	C13—N6—H6B	120.0
N5—C11—H11	117.4	H6A—N6—H6B	120.0
C12—C11—H11	117.4	C20—N7—C16	115.6 (3)
C11—C12—C13	119.6 (3)	C20—N7—Ni1	121.5 (2)
C11—C12—H12	120.2	C16—N7—Ni1	121.4 (2)
С13—С12—Н12	120.2	C18—N8—H8A	120.0
N6-C13-C14	122.5 (4)	C18—N8—H8B	120.0
N6-C13-C12	121.7 (4)	H8A—N8—H8B	120.0
C14—C13—C12	115.9 (3)	C25—N9—C21	116.0 (3)
C15—C14—C13	120.1 (3)	C25—N9—Ni2	124.1 (2)
C15—C14—H14	119.9	C21—N9—Ni2	118.8 (2)
C13—C14—H14	119.9	C23—N10—H10A	120.0
N5-C15-C14	124.0 (3)	C23—N10—H10B	120.0
N5—C15—H15	118.0	H10A—N10—H10B	120.0
C14—C15—H15	118.0	C30—N11—C26	115.3 (3)
N7—C16—C17	124.2 (3)	C30—N11—Ni2	124.7 (3)
N7—C16—H16	117.9	C26—N11—Ni2	120.0 (2)
С17—С16—Н16	117.9	C28—N12—H12A	120.0
C16—C17—C18	119.7 (3)	C28—N12—H12B	120.0
С16—С17—Н17	120.1	H12A—N12—H12B	120.0
C18—C17—H17	120.1	C31—N13—C35	115.3 (3)
N8—C18—C17	121.7 (3)	C31—N13—Ni2	123.8 (2)
N8—C18—C19	122.1 (3)	C35—N13—Ni2	120.7 (2)
C17—C18—C19	116.2 (3)	C33—N14—H14A	120.0
C20—C19—C18	119.4 (3)	C33—N14—H14B	120.0
С20—С19—Н19	120.3	H14A—N14—H14B	120.0
С18—С19—Н19	120.3	C36—N15—C40	116.2 (3)
N7—C20—C19	124.7 (3)	C36—N15—Ni2	123.0 (2)
N7—C20—H20	117.6	C40—N15—Ni2	120.4 (2)
C19—C20—H20	117.6	C38—N16—H16A	120.0
N9—C21—C22	123.8 (3)	C38—N16—H16B	120.0
N9—C21—H21	118.1	H16A—N16—H16B	120.0
C22—C21—H21	118.1	N5—Ni1—N3	97.26 (11)
C21—C22—C23	119.7 (3)	N5—Ni1—O3	100.55 (10)
C21—C22—H22	120.2	N3—Ni1—O3	161.83 (11)
С23—С22—Н22	120.2	N5—Ni1—N1	89.17 (11)
N10-C23-C22	122.0 (3)	N3—Ni1—N1	93.18 (11)
N10-C23-C24	121.4 (3)	O3—Ni1—N1	90.67 (10)
C22—C23—C24	116.5 (3)	N5—Ni1—N7	92.86 (11)
C25—C24—C23	119.3 (3)	N3—Ni1—N7	90.83 (11)
C25—C24—H24	120.3	O3—Ni1—N7	84.74 (10)
C23—C24—H24	120.3	N1—Ni1—N7	175.25 (11)
N9—C25—C24	124.5 (3)	N5—Ni1—O2	162.72 (10)

N9—C25—H25	117.8	N3—Ni1—O2	99.87 (10)
С24—С25—Н25	117.8	O3—Ni1—O2	62.22 (9)
N11—C26—C27	124.2 (4)	N1—Ni1—O2	92.15 (10)
N11—C26—H26	117.9	N7—Ni1—O2	84.65 (10)
С27—С26—Н26	117.9	N5—Ni1—C41	131.62 (11)
C26—C27—C28	120.3 (4)	N3—Ni1—C41	130.59 (11)
С26—С27—Н27	119.9	O3—Ni1—C41	31.29 (10)
C28—C27—H27	119.9	N1—Ni1—C41	94.09 (11)
N12—C28—C29	121.8 (4)	N7—Ni1—C41	81.35 (11)
N12—C28—C27	122.5 (4)	O2—Ni1—C41	31.10 (10)
C29—C28—C27	115.7 (3)	N15—Ni2—O1	88.93 (10)
C30—C29—C28	120.1 (4)	N15—Ni2—N9	174.15 (11)
С30—С29—Н29	120.0	01—Ni2—N9	85.33 (10)
С28—С29—Н29	120.0	N15—Ni2—N13	92.59 (11)
N11—C30—C29	124.5 (4)	01—Ni2—N13	172.51 (10)
N11—C30—H30	117.7	N9—Ni2—N13	92.98 (11)
С29—С30—Н30	117.7	N15—Ni2—N11	90.78 (11)
N13—C31—C32	125.1 (3)	O1—Ni2—N11	90.36 (10)
N13—C31—H31	117.4	N9—Ni2—N11	90.32 (11)
С32—С31—Н31	117.4	N13—Ni2—N11	96.96 (11)
C31—C32—C33	119.3 (3)	N15—Ni2—O1W	87.83 (10)
С31—С32—Н32	120.4	O1—Ni2—O1W	88.61 (9)
С33—С32—Н32	120.4	N9—Ni2—O1W	90.96 (10)
N14—C33—C34	122.3 (3)	N13—Ni2—O1W	84.12 (10)
N14—C33—C32	121.6 (4)	N11—Ni2—O1W	178.28 (11)
C34—C33—C32	116.1 (3)	C41—O1—Ni2	129.0 (2)
C35—C34—C33	120.0 (3)	Ni2—O1W—H1W1	87.2
С35—С34—Н34	120.0	Ni2—O1W—H2W1	108.0
С33—С34—Н34	120.0	H1W1—O1W—H2W1	107.7
N13—C35—C34	124.1 (3)	C41—O2—Ni1	89.51 (19)
N13—C35—H35	117.9	C41—O3—Ni1	91.67 (19)
С34—С35—Н35	117.9	H1W2—O2W—H2W2	107.8
N15—C36—C37	124.6 (3)	H1W3—O3W—H2W3	107.4
N15—C36—H36	117.7	H1W4—O4W—H2W4	107.8
С37—С36—Н36	117.7	H1W5—O5WA—H2W5	107.7
C36—C37—C38	119.1 (3)	H1WA—O5WB—H2WB	108.2
С36—С37—Н37	120.4	H1W6—O6WA—H2W6	107.7
С38—С37—Н37	120.4	H1WC—O6WB—H2WD	107.7
N16-C38-C39	121.6 (3)		
N1—C1—C2—C3	-0.3 (6)	C6—N3—Ni1—N5	-177.3 (3)
C1—C2—C3—N2	-177.5 (4)	C10—N3—Ni1—O3	-162.3 (3)
C1—C2—C3—C4	1.9 (6)	C6—N3—Ni1—O3	14.2 (5)
N2-C3-C4-C5	177.0 (5)	C10-N3-Ni1-N1	95.8 (3)
C2—C3—C4—C5	-2.4 (7)	C6—N3—Ni1—N1	-87.8 (3)
C3—C4—C5—N1	1.3 (8)	C10—N3—Ni1—N7	-86.8 (3)
N3—C6—C7—C8	-0.2 (6)	C6—N3—Ni1—N7	89.7 (3)
C6—C7—C8—N4	177.3 (4)	C10—N3—Ni1—O2	-171.5 (3)
C6—C7—C8—C9	-0.4 (6)	C6—N3—Ni1—O2	5.0 (3)
N4—C8—C9—C10	-177.2 (4)	C10—N3—Ni1—C41	-166.1 (3)

C7—C8—C9—C10	0.4 (5)	C6—N3—Ni1—C41	10.4 (3)
C8—C9—C10—N3	0.1 (6)	C1—N1—Ni1—N5	-99.9 (3)
N5-C11-C12-C13	-1.1 (6)	C5—N1—Ni1—N5	65.0 (3)
C11—C12—C13—N6	-179.4 (4)	C1—N1—Ni1—N3	162.9 (3)
C11—C12—C13—C14	1.2 (5)	C5—N1—Ni1—N3	-32.2 (3)
N6-C13-C14-C15	-179.6 (4)	C1—N1—Ni1—O3	0.6 (3)
C12-C13-C14-C15	-0.2 (6)	C5—N1—Ni1—O3	165.5 (3)
C13—C14—C15—N5	-1.1 (6)	C1—N1—Ni1—O2	62.9 (3)
N7-C16-C17-C18	-2.8 (6)	C5—N1—Ni1—O2	-132.3 (3)
C16-C17-C18-N8	-175.2 (3)	C1—N1—Ni1—C41	31.8 (3)
C16-C17-C18-C19	4.0 (5)	C5—N1—Ni1—C41	-163.3 (3)
N8—C18—C19—C20	176.6 (3)	C20—N7—Ni1—N5	-152.6 (3)
C17—C18—C19—C20	-2.6 (5)	C16—N7—Ni1—N5	42.1 (3)
C18-C19-C20-N7	-0.2 (6)	C20—N7—Ni1—N3	-55.3 (3)
N9-C21-C22-C23	1.6 (6)	C16—N7—Ni1—N3	139.4 (3)
C21-C22-C23-N10	174.7 (3)	C20—N7—Ni1—O3	107.1 (3)
C21—C22—C23—C24	-4.5 (5)	C16—N7—Ni1—O3	-58.3 (3)
N10-C23-C24-C25	-175.0 (3)	C20—N7—Ni1—O2	44.6 (3)
C22—C23—C24—C25	4.2 (5)	C16—N7—Ni1—O2	-120.8 (3)
C23—C24—C25—N9	-0.9 (6)	C20—N7—Ni1—C41	75.7 (3)
N11-C26-C27-C28	-0.6 (6)	C16—N7—Ni1—C41	-89.6 (3)
C26—C27—C28—N12	178.8 (4)	O2—C41—Ni1—N5	179.89 (18)
C26—C27—C28—C29	0.5 (6)	O3—C41—Ni1—N5	8.0 (3)
N12-C28-C29-C30	-179.3 (4)	O2-C41-Ni1-N3	-10.4 (2)
C27—C28—C29—C30	-0.9 (6)	O3—C41—Ni1—N3	177.73 (18)
C28—C29—C30—N11	1.5 (6)	O2-C41-Ni1-O3	171.9 (3)
N13-C31-C32-C33	0.4 (6)	O2—C41—Ni1—N1	87.37 (19)
C31—C32—C33—N14	-178.9 (4)	O3—C41—Ni1—N1	-84.53 (19)
C31—C32—C33—C34	1.3 (6)	O2—C41—Ni1—N7	-93.98 (19)
N14—C33—C34—C35	179.1 (4)	O3—C41—Ni1—N7	94.1 (2)
C32—C33—C34—C35	-1.0 (6)	O3—C41—Ni1—O2	-171.9 (3)
C33—C34—C35—N13	-1.0 (6)	C36—N15—Ni2—O1	-147.6 (3)
N15-C36-C37-C38	0.4 (6)	C40—N15—Ni2—O1	40.4 (3)
C36—C37—C38—N16	176.1 (4)	C36—N15—Ni2—N13	39.8 (3)
C36—C37—C38—C39	-4.2 (5)	C40—N15—Ni2—N13	-132.2 (3)
N16-C38-C39-C40	-175.0 (3)	C36—N15—Ni2—N11	-57.2 (3)
C37—C38—C39—C40	5.3 (5)	C40—N15—Ni2—N11	130.8 (3)
C38—C39—C40—N15	-2.7 (6)	C36—N15—Ni2—O1W	123.8 (3)
C2—C1—N1—C5	-0.9 (5)	C40—N15—Ni2—O1W	-48.2 (3)
C2—C1—N1—Ni1	165.0 (3)	C25—N9—Ni2—O1	-127.7 (3)
C4—C5—N1—C1	0.4 (6)	C21—N9—Ni2—O1	40.0 (3)
C4—C5—N1—Ni1	-165.7 (4)	C25—N9—Ni2—N13	45.0 (3)
C9—C10—N3—C6	-0.7 (5)	C21—N9—Ni2—N13	-147.3 (3)
C9—C10—N3—Ni1	175.8 (3)	C25—N9—Ni2—N11	142.0 (3)
C7—C6—N3—C10	0.7 (6)	C21—N9—Ni2—N11	-50.4 (3)
C7—C6—N3—Ni1	-176.2 (3)	C25—N9—Ni2—O1W	-39.1 (3)
C12—C11—N5—C15	-0.2 (5)	C21—N9—Ni2—O1W	128.5 (3)
C12—C11—N5—Ni1	-179.2 (3)	C31—N13—Ni2—N15	-151.3 (3)
C14—C15—N5—C11	1.3 (5)	C35—N13—Ni2—N15	33.6 (3)

C14—C15—N5—Ni1	-179.7 (3)	C31—N13—Ni2—N9	30.5 (3)
C19—C20—N7—C16	1.6 (5)	C35—N13—Ni2—N9	-144.6 (3)
C19—C20—N7—Ni1	-164.6 (3)	C31—N13—Ni2—N11	-60.2 (3)
C17—C16—N7—C20	-0.1 (5)	C35—N13—Ni2—N11	124.7 (3)
C17—C16—N7—Ni1	166.1 (3)	C31—N13—Ni2—O1W	121.1 (3)
C24—C25—N9—C21	-2.0 (5)	C35—N13—Ni2—O1W	-54.0 (3)
C24—C25—N9—Ni2	165.9 (3)	C30—N11—Ni2—N15	104.0 (3)
C22-C21-N9-C25	1.7 (5)	C26—N11—Ni2—N15	-79.3 (3)
C22-C21-N9-Ni2	-166.9 (3)	C30—N11—Ni2—O1	-167.0 (3)
C29—C30—N11—C26	-1.5 (6)	C26—N11—Ni2—O1	9.7 (3)
C29—C30—N11—Ni2	175.4 (3)	C30—N11—Ni2—N9	-81.7 (3)
C27-C26-N11-C30	1.0 (6)	C26—N11—Ni2—N9	95.0 (3)
C27—C26—N11—Ni2	-176.0 (3)	C30-N11-Ni2-N13	11.3 (3)
C32-C31-N13-C35	-2.3 (6)	C26—N11—Ni2—N13	-172.0 (3)
C32—C31—N13—Ni2	-177.7 (3)	O2-C41-O1-Ni2	-157.8 (2)
C34—C35—N13—C31	2.6 (5)	O3—C41—O1—Ni2	23.7 (5)
C34—C35—N13—Ni2	178.1 (3)	N15—Ni2—O1—C41	-106.2 (3)
C37—C36—N15—C40	2.5 (5)	N9—Ni2—O1—C41	72.7 (3)
C37—C36—N15—Ni2	-169.8 (3)	N11—Ni2—O1—C41	163.0 (3)
C39—C40—N15—C36	-1.3 (5)	O1W—Ni2—O1—C41	-18.3 (3)
C39—C40—N15—Ni2	171.2 (3)	O1—C41—O2—Ni1	-171.0 (3)
C11—N5—Ni1—N3	-58.4 (3)	O3—C41—O2—Ni1	7.6 (3)
C15—N5—Ni1—N3	122.7 (3)	N5-Ni1-O2-C41	-0.3 (4)
C11—N5—Ni1—O3	118.0 (3)	N3—Ni1—O2—C41	172.03 (19)
C15—N5—Ni1—O3	-61.0 (3)	O3—Ni1—O2—C41	-4.74 (18)
C11—N5—Ni1—N1	-151.5 (3)	N1-Ni1-O2-C41	-94.4 (2)
C15—N5—Ni1—N1	29.6 (3)	N7—Ni1—O2—C41	82.1 (2)
C11—N5—Ni1—N7	32.8 (3)	O1-C41-O3-Ni1	170.8 (3)
C15—N5—Ni1—N7	-146.1 (3)	O2—C41—O3—Ni1	-7.8 (3)
C11—N5—Ni1—O2	114.0 (4)	N5-Ni1-O3-C41	-173.93 (19)
C15—N5—Ni1—O2	-65.0 (5)	N3—Ni1—O3—C41	-5.5 (4)
C11—N5—Ni1—C41	113.8 (3)	N1—Ni1—O3—C41	96.8 (2)
C15—N5—Ni1—C41	-65.2 (3)	N7—Ni1—O3—C41	-82.0 (2)
C10—N3—Ni1—N5	6.2 (3)	O2—Ni1—O3—C41	4.72 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1W—H2W1···O2W ⁱ	0.85	2.04	2.807 (4)	150
N2—H2B…Cl1 ⁱⁱ	0.86	2.44	3.283 (4)	166
O2W—H2W2···O1W ⁱ	0.85	2.35	2.807 (4)	114
N4—H4A…Cl2 ⁱⁱⁱ	0.86	2.61	3.405 (4)	153
N6—H6A…Cl1 ⁱ	0.86	2.45	3.303 (4)	170
N8—H8B···O1 ^{iv}	0.86	2.41	3.218 (4)	157
N8—H8B···O2 ^{iv}	0.86	2.36	3.118 (4)	147
O5WA—H2W5···Cl2 ⁱ	0.85	2.50	3.314 (6)	161
N10—H10A···O2 v	0.86	2.10	2.880 (4)	151

N10—H10B…Cl1 ⁱⁱ	0.86	2.48	3.308 (3)	162	
O5WB—H1WA…O1W ⁱ	0.85	2.14	2.843 (7)	140	
O5WB—H2WB…N14 ^{vi}	0.85	2.39	3.175 (8)	154	
N12—H12B····Cl2 ^{iv}	0.86	2.73	3.401 (4)	137	
N14—H14A…Cl1 ^{vii}	0.86	2.47	3.318 (4)	168	
N16—H16B…Cl2 ^{viii}	0.86	2.54	3.364 (4)	162	
C6—H6…N10 ^v	0.93	2.49	3.352 (5)	155	
C26—H26····N8 ^{iv}	0.93	2.57	3.413 (5)	151	
O1W—H1W1···O3	0.85	1.68	2.525 (3)	171	
O2W—H1W2···Cl2	0.85	2.53	3.155 (4)	132	
O2W—H2W2···O3W	0.85	2.40	2.820 (8)	111	
N6—H6B····O2W	0.86	2.22	2.971 (5)	145	
O4W—H1W4···Cl2	0.85	1.76	2.591 (8)	166	
N8—H8A····Cl1	0.86	2.50	3.350 (3)	169	
O5WA—H1W5…O1W	0.85	2.24	2.802 (6)	124	
O6WA—H2W6···O4W	0.85	2.03	2.870 (7)	170	
N16—H16A…Cl1	0.86	2.45	3.301 (4)	170	
С1—Н1…О3	0.93	2.43	3.020 (4)	121	
С6—Н6…О2	0.93	2.58	3.224 (4)	127	
C15—H15…N1	0.93	2.57	3.065 (4)	114	
C26—H26…O1	0.93	2.36	2.982 (4)	124	
C15—H15…Cg1	0.93	2.86	3.559 (5)	133	
C22—H22···Cg1 ^v	0.93	2.95	3.764 (5)	147	
N4—H4B…Cg2 ⁱⁱⁱ	0.86	2.84	3.668 (5)	163	
C1—H1…Cg3	0.93	2.99	3.653 (5)	130	
N12—H12B····Cg3 ^{ix}	0.86	2.92	3.783 (5)	177	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) -*x*+2, -*y*+1, -*z*; (iv) -*x*+1, -*y*+1, -*z*; (v) -*x*+1, -*y*+2, -*z*; (vi) *x*+1, *y*-1, *z*; (vii) -*x*, -*y*+1, -*z*+1; (viii) *x*-1, *y*, *z*; (ix) -*x*, -*y*+2, -*z*.

